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• With the potential to have a major impact on 
the future of American education 

 



Individualization 

• Folks have been talking about individualizing 
education for a long time 
(Rousseau, 1762; Parkhurst, 1922) 



We’re starting to get there… 
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Determining Something About the Student 

• We’ve made a ton of progress, accelerating in 
recent years 



Stuff We Can Infer: 
Complex Cognitive Skill 

• Programming (Corbett & Anderson, 1995) 

• Physics (Martin & VanLehn, 1995) 

• Mathematics (Feng et al., 1999)  

• Databases (Mitrovic et al., 2001) 

• Science Inquiry Skill (Sao Pedro et al., 2013) 
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Stuff We Can Infer: 
Deep Learning 

• Retention (Jastrzembski et al., 2006; Pavlik et 
al., 2008; Wang & Beck, 2012) 

• Transfer/Shallow Learning (Baker et al., 2011, 
2012) 

• Preparation for Future Learning (Baker et al., 
2011; Hershkovitz et al., in press) 
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Stuff We Can Infer: 
Meta-Cognition 

• Self-Efficacy/Uncertainty/Confidence (Litman 
et al., 2006; McQuiggan, Mott, & Lester, 2008; 
Arroyo et al., 2009) 

• Unscaffolded Self-Explanation (Shih et al., 
2008; Baker, Gowda, & Corbett, 2011) 

• Help Avoidance (Aleven et al., 2004, 2006) 

• Conscientiousness and Persistence (Ventura et 
al., 2012) 
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Stuff We Can Infer: 
Disengaged Behaviors 

• Gaming the System (Baker et al., 2004, 2008, 
2010; Walonoski & Heffernan, 2006; Beal, Qu, 
& Lee, 2007) 

• Off-Task Behavior (Baker, 2007; Cetintas et al., 
2010) 

• Inexplicable “WTF” Behavior (Rowe et al., 
2009; Wixon et al., 2012) 

• Carelessness (San Pedro et al., 2011; 
Hershkovitz et al., 2011) 
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Stuff We Can Infer: 
Affect 

• Boredom (D’Mello et al., 2008; Sabourin et al., 2011; Baker 
et al., 2012) 

• Frustration (McQuiggan et al., 2007; D’Mello et al., 2008; 
Sabourin et al., 2011; Baker et al., 2012) 

• Confusion (D’Mello et al., 2008; Lee et al., 2011; Sabourin 
et al., 2011; Baker et al., 2012) 

• Engaged Concentration/Flow (D’Mello et al., 2008; 
Sabourin et al., 2011; Baker et al., 2012) 

• Curiosity (Sabourin et al., 2011) 
• Excitement (Arroyo et al., 2009) 
• Situational Interest (Arroyo et al., 2009) 
• Joy (Conati & Maclaren, 2009a, 2009b) 
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Sensor-free detection possible 

• Recent systems have been able to infer these 
constructs solely from student interaction 
with the learning system 



Example 

• Automated detectors of student engagement 
and affect in ASSISTments (Pardos et al., 2013; 
Ocumpaugh et al., under review) 



Process 
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Field Observations of Student 
Engagement and Affect 

• Using BROMP observation protocol (Ocumpaugh et 
al., 2012)  

– over 40 coders trained, used in dozens of papers 

• Synchronized to log files with Android app HART 
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Use data mining to find behaviors that 
co-occur with human observations  

• 160 features of interaction distilled 

 

• Small set of data mining algorithms compared: 

– Decision Trees 

– Decision Rules 

– Step Regression 

– Naïve Bayes 

– K* 
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Model generalizability tested on new 
students from diverse populations 

• Students in rural, urban, and suburban schools 
in Northeastern USA 

– Diverse in terms of SES, race, ethnicity 
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Result 

• Models that can distinguish a bored, 
frustrated, confused, engaged, off-task, or 
gaming student 

– 63-82% of the time 

– Achieving agreement with human coders 1/3 to 
2/3 as well as coders agree with each other 

 



1. Determining something about the student 

2. Knowing what matters 

3. Doing the right thing about it 
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• Off-task behavior is continually a major focus 
of classroom management practice 

 



But…  
Off-Task Behavior is: 

• More weakly correlated with learning and 
other outcomes than many other constructs 

• Off-Task Behavior can foster positive 
collaborative relationships (cf. Goldman, 1996; 
cf. Barron, 2003; Kreijns, 2008) 
– E.g. a collaboration strategy 

• Off-Task Behavior can disrupt boredom (Baker 
et al., 2011) 
– E.g. an emotional regulation strategy 

 



So… 

• Reduction of off-task behavior should 
probably not be a focus of Cyberlearning 
systems 

 

• Though carefully leveraging and managing it 
may be beneficial and useful… 



Focusing on what matters 

Behavior 
in 

software 

Longer-
term 

learning 
outcomes 

Dropout 

College 
enrolment 

Choice of 
STEM or other 
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useful careers 

(Feng et al., 2009; 
Pardos et al., 2013) 



Focusing on what matters 

Behavior 
in 

software 

Longer-
term 

learning 
outcomes 

Dropout 
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enrollment 

Choice of 
STEM or other 

societally 
useful careers 

(Feng et al., 2009; 
Pardos et al., 2013) 

(Dekker et al., 
2009; Bowers, 
2010; Arnold, 
2010; Ming & 
Ming, 2012) 



Example 
(San Pedro, Baker, Bowers, & Heffernan, in press) 

• Automated detectors of engagement, affect, 
and learning in ASSISTments 

 

• Can predict 

 

• Whether a student will go to college or not, ~6 
years later 

– 69% of the time for new students 

 



Example 
(San Pedro, Baker, Bowers, & Heffernan, in press) 

• And the model can indicate what aspects of a 
student’s behavior are predictive of college 
attendance 

 

• Alex is less likely to go to college 
– Top predictive factors: he is getting confused and 

gaming the system… 

• Maria is less likely to go to college 
– Top predictive factors: she is getting bored and 

careless… 



1. Determining something about the student 

2. Knowing what matters 

3. Doing the right thing about it 



What do we do? 

• When we know that a student is bored… or 
gaming the system… or has shallow learning… 
or etc. etc. etc. 
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Huge Space of Potential Interventions 

• Theory can be our guide for which 
intervention to use… 

– But which theory? 

– And is it applicable in the current situation? 

– And, knowing that detection will always be wrong 
sometimes… 

– What are the relative costs of incorrectly applied 
interventions, compared to the benefits of 
correctly applied interventions? 



What we need 
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What we need 

• Lots and lots and lots and lots and lots of 
randomized studies comparing individualized 
interventions 
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online learning systems 

• Try at small-scale and ramp up successes 
automatically 

• Try, fail, and try again quickly! 

 

 

 

 

 



Deployed automatically through  
online learning systems 

• Try at small-scale and ramp up successes 
automatically 

• Try, fail, and try again quickly! 

 

• Some systems now used for hundreds of studies 
conceived by outside experimenters, a powerful 
tool for progress 
– PSLC LearnLabs 

– ASSISTments 

– MOOC platforms possibly moving in this direction? 
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In these studies… 

• Automated detectors can be used not just to 
drive interventions 

• But also to understand the results of 
interventions 

 



What is the effect of my new 
confusion intervention on… 

• Future confusion 

• Future boredom 

• Future gaming the system 

• Future learning of the same topic 

• Future learning of new topics 

• Etc. etc. 
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• We can not only create more individualized 
learning experiences 
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With these methods… 

• We can not only create more individualized 
learning experiences 

 

• But understand the full range of effects of our 
interventions 

 

• Creating a feedback-loop that makes online 
learning more and more effective and 
engaging each year! 



Thanks! 

• Twitter @BakerEDMLab 

• Facebook “Baker EDM Lab” 

• Publications http://www.columbia.edu/~rsb2162/publications.html 

• “Big Data and Education” on Coursera 
https://www.coursera.org/course/bigdata-edu 

• Masters in Cognitive Studies with Focus on 
Learning Analytics, Starting Fall 2013 
 


